MARIONNEAUX KANTROW, LLC 10202 JEFFERSON HWY, BUILDING C BATON ROUGE, LOUISIANA 70809 (225) 769-7473 FAX (225) 757-1709 WWW.MKLAWLA.COM

KYLE C. MARIONNEAUX kyle@mklawla.com

KARA B. KANTROW <u>kara@mklawla.com</u>

JOHN N. GRINTON john@mklawla.com August 26, 2022

CC: 37

BY HAND DELIVERY

Ms. Terri Bordelon Records and Recording Division Louisiana Public Service Commission Galvez Building, 12th Floor Baton Rouge, LA 70802

> Re: LPSC Docket No. I-36503 - 2022 Integrated Resource Planning ("IRP") Process for 1803 Electric Cooperative, Inc., pursuant to the General Order No. R-30021, dated April 18, 2012

Dear Ms. Bordelon:

Please find attached an original and three (3) copies of the Data Inputs and Assumptions being filed on behalf of 1803 Electric Cooperative, Inc. ("1803") in connection with the above docket.

Should you have any questions, please contact me. Thank you and kindest regards.

Sincerely,

lyle C. Marionnoon

Kyle C. Marionneaux

Enclosures cc: Official Service List

ı.

La. O

2023 Integrated Resource Plan **1803 Electric Cooperative:**

Methodology and Data Assumptions

August 28, 2022

ΓĘ 2022 AUG 26 PH 2: 0 LA PUBLIC SERVICE

Table of Contents

- Summary Information
- Company
- Process
- Timeline
- Going-In Energy and Capacity Position
- Key Assumptions
- Load Forecast
- Resource Alternatives
- Commodity Curves
- Scenario Design Framework
 - Modeling and Methodology
- Summary and Next Steps

1803: Cooperative Overview

- Generation & Transmission (G&T) cooperative in Louisiana
- Five Member Cooperatives:
- 1) Beauregard Electric Cooperative
- 2) Claiborne Electric Cooperative
- Northeast Louisiana Power Cooperative ("NELPCO")
- South Louisiana Electric Cooperative Association ("SLECA")
- Washington-St. Tammany Electric Cooperative ("WST")
- Power Supply Portfolio approved and certified by LPSC in January 2022 (Docket U-35927)

o. U-35927	 File Request to Initiate an IRP Process within six months Provide a timeline such that the completion of its IRP would occur within a year of filing its notification with the Commission 	msider modifying the IRP General Order to remove · Request to Initiate an IRP Process with the docket with a timeline such that the completion of its mmission."	Source: <u>Utility Order for 1803 Electric Cooperative. Inc. ex parte.</u>
LPSC Order in Docket N	As part of the LPSC approval of 1803's power supply portfolio, 1803 is required to:	"4. Commission Staff is directed to open a rulemaking docket to co the exemption for electric cooperatives. 5. Notwithstanding the rulemaking docket above, 1803 shall file its Commission within six months of receiving its certification in this d IRP would occur within a year of filing its notification with the Con-	1800 ELECTRIC COOPERATIVE Activities Cooperative

Accelerated 1803 IRP Timeline

Event	Description	Normal IRP Schedule* (Draft Filed in One Year)	Assuming Deadline is To Publish Final IRP in One Year
1	Submit request to initiate IRP	July 29, 2022	July 29, 2022
2	File data assumptions	August 28, 2022	August 28, 2022
ŝ	First stakeholder meeting	September 29, 2022	September 27, 2022
4	Stakeholders file written comments	November 29, 2022	November 1, 2022
ß	Publish draft IRP	July 28, 2023	March 5, 2023
9	Second stakeholder meeting	August 29, 2023	March 31, 2023
7	Stakeholders file written comments	October 31, 2023	May 10, 2023
80	Staff files written comments	November 30, 2023	June 10, 2023
6	Publish final IRP	February 29, 2024	July 28, 2023
10	Stakeholders file disputed issues and alternative :	April 30, 2024	September 28, 2023
	recommendations	-	
11	Staff files recommendation to Commission	May 30, 2024	October 31, 2023
12	Commission Order acknowledging IRP or	July 30, 2024	November 30, 2023
	procedural schedule	*; ;	· , , , ,

1805) ELECTRIC COPERATIVE

* <u>Source</u>: Docket No. R-30021 - LPSC, Development and Implementation of Rule for Integrated Resource Planning for Electric Utilities

1803 Electric Cooperative: Going-In Capacity Position

ources
Res
acted
contra
nd C
/ed a
prov
03 Ap

	Term	ZO NEEKS	20 Years	20 Years	20 Years	5 Years	5 Years	20 Years 4
r fiddne	Installed MW	409	98	150	95	27% of load	185	35
	Resource Type	Natural Gas, ¹ Hyଣ/ଦ୍ୱେହନ	Şolar	Solar	Solar	Fixed Price Load Following	Natural Gas	Hydro
ī	Supplier	Megnolia	Bayou Galion	Bayou Chicot	Bayou Teche	Constellation	Calpine ¹	SWPA ²

LPSC Approved Power Supply Resources

Energy Only
 Southwest Power Administration

1803 Load Forecast

	Winter Peak	Summer Peak		
ľ	(MM)	(MM)	Annual Energy (GWh)	Load Factor (%)
2025	933		4,153	51%
2026	943	860	4,196	51%
2027	952	868	4,234	51%
2028	956	872	4,267	51%
2029	. 967	881	4,299	51%
2030	974	888	4,331	51%
2031	982	894	4,363	51%
2032	986	898	4,395	51%
2033	966	908	4,428	51%
2034	1,004	915	4,462	51%
2035	1,011	921	4,492	51%
2036	1,016	924	4,525	51%
2037	1,026	934	4,559	51%
2038	1,033	940	4,589	51%
2039	1,040	947	4,620	51%
2040	1,045	951	4,653	51%
2041	1,055	096	4,685	51%
2042	1,062	966	4,714	51%
2043		972	4,745	51%
2044	1,073	975	4,776	51%

1803) ELECTRIC COOPERATIVE

IRP Modeling: Methodology and Assumptions Overview

Modeling Software: EnCompass

posed seasonal construct for capacity. elieves it is prudent to consider the		 MISO Resource Adequacy Reforms Conceptual Designs Planning Year 2025/2026 UCAP from MISO Planning Year 2022-2023 Loss of Load Expectations Study Report
 <u>MISO Seasonal Capacity Construct</u>¹: Firm capacity requirements will reflect MISO's prop While MISO rules have not been finalized, 1803 be seasonal construct in the 2023 IRP modeling. 	 Season definitions Winter: December, January, February Spring: March, April, May Summer: June, July, August Fall: September, October, November Reserve margin target for each season: 7.4%² 	 1803 Discount Rate: 5.0% BOS Elecrate COOPERATIVE

Modeling Assumptions

New Resources: Screening (1/2)

						14
New Tech	 Full Hydrogen Combustion Turbines 	 Long Duration Energy 	Storage	Capture	Reactors	
Demand-Side	 Energy Efficiency 	Response	 Distributed Resources 			
Renewables/Storage	 Šolar Utility-scale Commercial Residential 	• Wind	 Standalone Battery 	Storage Hybrid Solar + 	Storage	
Thermal	 Combustion Turbine Combined 	Cycle	 Aeroderivative Turbine 	 Reciprocating Engines 		COPERATIVE COOPERATIVE A from Supply Cooperative
						18

New Resources: Screening (2/2)

New Tech	Know: Potential to meet low- carbon goals with long- duration tech <i>Cons</i> : Not often commercially available projects for proven tech; 10+ years expected for meaningful impact	
Demand-Side	Demand Ecsources Resources Resources Pros: Carbon benefits; local economic impact; cost effective energy and capacity Cons: Uncertain cost- effective and realistic. potential for volume, cost.	
Renewables/Storage	 Solar, Wind: Pros: Low-carbon, potentially low-cost Cons: Firm capacity value; ELCC risk; energy value cannibalized Battery Storage: Storage: Pros: Low/No carbon firm capacity resource Cons: ELCC risk; 	
Thermal	Matural Gas: Pros: Firm, dispatchable capacity resource capacity resource canaded cost risk; winter gas supply risk; carbon-emitting resource	CODERATIVE COOPERATIVE COOPERATIVE

New Resource Parameters

۲

Technology	ISO Rating (MW) ¹	Capital Cost (\$202:1/kW) ^{2,3}	Variable O&M (\$2021/MWh) ^{2,3}	Fixed O&M (\$2021/kW) ^{2,3}	Heat Rate ²
Small Modular Reactor	600	\$7,306	\$3.14	\$99.46	10,443
1x1 Combined Cycle	418	\$1,115	\$2.67	\$14.76	6,431
2x1 Combined Cycle	1083	\$979	\$1.96	\$12.77	6,370
Combined Cycle with 90% Carbon Capture	377	\$2,688	\$6.11	\$28.89	7,124
Reciprocating Internal Combustion Engine (RICE)	2	\$1,962	\$5:96	\$36.81	8,295
Combustion Turbine—Aero	105	\$1,194	\$4.92	\$17.06	9,124
Combustion Turbine—Frame	237	\$724	\$4.71	\$7.33	9,905
Battery Storage	50'.	\$1,475	\$0.00	\$36.89	NIA
Pully	20	\$1,390	\$0.00	\$43.66	N/A
Wind Offshore	50	\$2,424	\$0.00	\$108.95	NĪĀ
Solar Photovoltaic (Tracking)		\$1,168	\$0.00	\$21.07	NA
Solar Photovoltaic (Tracking) w/ Battery Storage	50	\$2,643	ູ່ ຊື່ <u>ດ</u> ີ.ດັດ	\$57.96	A/A

¹ Thermal resources ISO ratings from Sargent & Lundy EIA Report https://www.eia.gov/analysis/studies/powerplants/capitalcost/pdf/capital_cost_AEO2020.pdf ² Thermal resources cost from EfA Annual Energy Outlook 2022: Electricity Market Module https://www.eia.gov/outlooks/aeo/assumptions/pdf/electricity.pdf ³ Renewable and storage cost from NREL's Annual Technology Baseline atb.nrel.gov

	ssumed to be a part of every seen increases in replacement	energy (limited to 25% of	eduction <u>xt</u>
Reduction Act (IRA)	on Act was signed into law on August 16, 2022. The law is assu though additional scenarios will account for potential unforesee	 WWh in 2022 dollars) standalone battery storage taxable entities meeting domestic content, labor conditions for electric vehicles ble for rural electric co-ops to purchase renewable entities 	REPEAT* Project Section-by- Inflation Redu Section Summary (Google Sheet) Act: Full Text AT = Rapid Energy Policy Evaluation and Analysis Toolkit (site) Act: Full Text
Inflation I	The Inflation Reduction modeled scenario, alt resource cost.	 IRA Highlights 100% PTC (\$26/h 30% ITC for solar 30% ITC for solar Direct pay for non Bonus credits for \$7,500 tax credit \$9.7 Billion availa project cost) 	Further Reading: BOS ELECTRIC COOPERATIVE COOPERATIVE

-

Offshore Wind

- Technical potential of 2,000 GW in US waters and 508 GW in the Gulf of Mexico.¹
- Current development and operational pipeline exceeds 35 GW1
- Federal target to install 30 GW of capacity by 2030.¹
 States targets are aiming to procure at least 39 GW bi
- States targets are aiming to procure at least 39 GW by 2040.²
- Capacity factors for offshore wind are expected to exceed 45%³
- Floating offshore wind LCOE is predicted to decline from approximately \$160/MVh in 2020 to \$60-\$105/MVh in 2030.2
- By 2030, NREL estimates LCOE between \$70/MWh and \$80/MWh in the Western Gulf.²
- Inflation Reduction Act (IRA) benefits offshore wind development.

Source: NREL

- Extends full ITC and PTC provisions until 2032.
- Increases the geographic areas which may be leased for offshore wind.
- \$100 million for the DOE to study transmission for offshore win

ihttps://www.boem.gov/sites/default/files/documants/renewable-energy/state-activities/National-Renewable-Energy-Laboratory-Walt-Musial.pdf 3https://www.energy.gov/sites/default/files/2021-08/Offshore5520Wind%20Market550Report%202015520Edition_Final.pdf 1https://ath.nrei.gov/electricky/2022/offshore_wind#912RUMVW

 Energy Efficiency Study Guernsey is conducting an energy efficiency study to evaluate demand-side resources in this IRP Guernsey will conduct cost/benefit analysis of programs using the five tests described in the LPSC EE rules Study results will be provided later in the IRP process are incorporated into the final IRP report 	1803 ELECTRIC COOPERATIVE
---	------------------------------

Scenario Descriptions

1803) ELECTRIC COOPERATIVE

Scenario Drivers

	Status Quo	Inflationary Period	Low Price Environment	Aggressive Environmental
1803 Load	Base	Base	Base	Base
Natural Gas Prices	Base	High	Low	High
Technology Costs	ITC/PTC extended per IRA	ITC/PTC extended per IRA; High Costs Offset	ITC/PTC extended per IRA	20-Year LTC/PTC Extension
Carbon Legislation	None	None	None	Federal Price on Carbon starts in 2028

Load Forecast Sensitivities

- Load forecast risk driven by uncertainty around:
- Economic growth
- End-use consumer mix
- Electric vehicle penetration
- Electrification (home, commercial, industrial)
- Load forecast will be stressed via sensitivity analysis to capture risk of:
 - Higher than expected growth leading to capacity shortfalls
- Lower than expected growth leading to excess capacity and/or energy

Scenario	Modeling Fra	amev	vork				
Capacity	Expansion		Production	Cost and	l Scenario	o Analys	S
1803 portfolio will be optimized in each scenario, resulting in a u	with the respective assumptions nique portfolio for each scenario		Hourly Pro	oduction recultion	i Cost Ri	uns:	
Status Quo	Inflationary		expansion expansion each of th	locked e four se	and run cenarios	throug	۲.
			Result: 4 p	ortfolio	x 4 scer	lario ma	atrix
					SCEN	ARIOS	
I ow Price	Δσστοςςίνο	,		Status Quo Assumptions	Inflationary Period Assumptions	Low Price Environment Assumptions	Aggressive Environmental Assumptions
			Status Quo Portfolio				
Environment	Environmental	SOLIO	Inflationary Period Portfolio	_			
		-17O	Law Price Environment Portfolio				
		1	Aggrossive Environmental Portfolio				
BOB COOPERATIVE							
Peres Supp.							

,

1803 ELECTRIC COOPERATIVE

Next Steps

1803 IRP: Next Steps

- September 27, 2022. 1803 will provide meeting details First public stakeholder meeting will be conducted on and registration options for interested stakeholders in advance of that date
- format upon request, and confidential data will require a Modeling assumptions can be provided in electronic signed NDA

